文章编号:1000-324X(2022)12-1267-08

DOI: 10.15541/jim20220265

硅酸镱环境障涂层抗熔盐腐蚀行为与机制研究

刘平平^{1,2}, 钟 鑫¹, 张 乐³, 李 红², 牛亚然¹, 张翔宇¹, 李其连³, 郑学斌¹

(1. 中国科学院 上海硅酸盐研究所, 上海 200050; 2. 上海大学 复合材料研究中心, 上海 200072; 3. 中国航空制

造技术研究院,北京 100024)

摘要:稀土硅酸盐环境障涂层(EBC)是应用于新一代高推重比航空发动机热端部件的重要材料,但其在高温熔盐 环境的腐蚀行为与机制尚不明晰。本工作采用真空等离子喷涂技术(VPS)制备了 Yb₂SiO₅/Yb₂Si₂O₇/Si 环境障涂层, 并研究了该涂层体系在 900 ℃、Na₂SO₄+25% NaCl(质量分数)熔盐环境中的腐蚀行为与机制。研究发现,所制备的 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系结构致密,各层之间结合良好;涂层体系腐蚀 240 h,熔盐组分渗透 Yb₂SiO₅ 涂层,在 Yb₂Si₂O₇中间层发生富集。涂层中 Yb₂SiO₅相具有良好的稳定性,Yb₂O₃第二相与熔盐发生反应,且随腐蚀时间延 长,Yb₂O₃含量减少。中间层 Yb₂Si₂O₇相与熔盐反应生成磷灰石相 NaYb₉Si₆O₂₆和钠硅酸盐,并产生 Cl₂和 SO₂等挥发 性物质,从而影响服役寿命。硅黏结层中未发现熔盐渗透现象,保持完整。该涂层体系具有良好的抗熔盐腐蚀性能。 关键词:环境障涂层;硅酸镱;Na₂SO₄+25% NaCl 熔盐;腐蚀机制

中图分类号: TQ174 文献标志码: A

Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating

LIU Pingping^{1,2}, ZHONG Xin¹, ZHANG Le³, LI Hong², NIU Yaran¹, ZHANG Xiangyu¹, LI Qilian³, ZHENG Xuebin¹

(1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Research Center of Composite Materials, Shanghai University, Shanghai 200072, China; 3. Avic Manufacturing Technology Institute, Beijing 100024, China)

Abstract: Environmental barrier coating (EBC) is essential for protection of ceramic matrix composite hot-sections in future gas turbine engines with high thrust-to-weight ratio. Rare-earth silicates, such as Yb_2SiO_5 and $Yb_2Si_2O_7$, have been developed for potential application as EBC. However, the corrosion behaviors and mechanisms of EBC in molten salt environment such as Na_2SO_4 at high temperature are not clear. In this work, the $Yb_2SiO_5/Yb_2Si_2O_7/Si$ coating was prepared by vacuum plasma spraying (VPS). The molten salt ($Na_2SO_4+25\%$ NaCl, in mass) corrosion behaviors and mechanisms of the coating at 900 °C for 60–240 h were investigated. Results showed that the $Yb_2SiO_5/Yb_2Si_2O_7/Si$ coating exhibited dense structure with good bonding between the triple ceramic layers. The molten salt of $Na_2SO_4+25\%$ NaCl penetrated the Yb_2SiO_5 top layer and enriched in the $Yb_2Si_2O_7$ interlayer, while the interfacial

National Science and Technology Major Project (2017-VI-0020-0092); Shanghai Sailing Program (19YF1453900); Natural Science Foundation of Shanghai (20ZR1465700)

收稿日期: 2022-05-06; 收到修改稿日期: 2022-05-29; 网络出版日期: 2022-06-16

基金项目:国家科技重大专项(2017-VI-0020-0092); 上海市青年科技英才扬帆计划(19YF1453900); 上海市自然科学基金 (20ZR1465700)

作者简介: 刘平平(1995-), 女, 硕士研究生. E-mail: ppliu1234@163.com

LIU Pingping (1995–), female, Master candidate. E-mail: ppliu1234@163.com

通信作者: 钟 鑫, 助理研究员. E-mail: zhongxin@mail.sic.ac.cn; 李 红, 研究员. E-mail: lihong2007@shu.edu.cn ZHONG Xin, assistant professor. E-mail: zhongxin@mail.sic.ac.cn; LI Hong, professor. E-mail: lihong2007@shu.edu.cn

bonding between the coating and substrate still remained good after corrosion for 240 h. The Yb₂SiO₅ phase in the top layer exhibited good stability, while the second phase of the Yb₂O₃ reacted with molten salt. The content of the Yb₂O₃ decreased with the increase of corrosion time. The Yb₂Si₂O₇ phase in the interlayer reacted with molten salt to form apatite phase of NaYb₉Si₆O₂₆ and sodium silicate as well as volatile species such as Cl₂ and SO₂, which might shorten the service life of the coating. Moreover, there was almost no molten salt in the silicon bond layer, which remained intact. The Yb₂SiO₅/Yb₂Si₂O₇/Si coating exhibited good resistance to molten salt corrosion.

Key words: environmental barrier coating; ytterbium silicate; Na₂SO₄+25% NaCl molten salt; corrosion mechanism

硅基非氧化物陶瓷及其复合材料具有低密度、 高比强度、耐高温、抗氧化和优异的高温力学性能 等特点,可部分取代高温合金应用于航空发动机的 热端部件^[1]。在干燥环境中,硅基非氧化物陶瓷材料 与氧气发生反应生成 SiO₂保护层,可以避免其继续 氧化。然而,航空发动机的服役环境包含多种腐蚀 介质(如高温水蒸气、熔盐等),会与 SiO₂保护层反应 生成挥发性的 Si(OH)₄,导致材料性能迅速退化^[2-3]。 环境障涂层(Environmental Barrier Coating, EBC)涂 覆于硅基非氧化物陶瓷材料表面,能够将基体与发 动机中的腐蚀性介质隔离开来,从而有效提高材料 在发动机环境中的性能稳定性^[4]。

稀土硅酸盐材料具有良好的相稳定性、优异的 耐蚀性能、与基体匹配的热膨胀系数等特点,是最 具应用潜力的环境障涂层材料。王京阳等^[5]结合第 一性原理和实验表征系统研究了不同稀土硅酸盐块 体材料的力学与热学性能。王一光等^[6-7]针对稀土硅 酸盐块体材料的耐蚀性能开展了相关研究工作,发 现 X2-RE₂SiO₅比 X1-RE₂SiO₅具有更好的耐蚀性能。 近年来,通过高熵化设计优化稀土硅酸盐材料的性 能也引起了研究者的关注^[8-9]。这些工作为 EBC 的选 材和结构优化设计提供了可靠的理论依据。稀土硅 酸盐用作涂层材料时、其结构、性能与块体材料相 比会产生差异。本研究团队[10-15]针对不同稀土硅酸盐 涂层材料的显微结构、热学力学性能和耐蚀性能开 展了系列研究,发现稀土硅酸盐涂层在制备过程中 易形成孔隙和裂纹等缺陷,并分解产生氧化物第二相, 从而影响涂层的抗热震和耐蚀性能。为提高 EBC 的 服役性能,研究者^[16-17]开发了稀土硅酸盐/Si和稀土 硅酸盐/Mullite/Si 等涂层体系。张小锋等^[18-21]采用等 离子喷涂-物理气相沉积技术(Plasma Spray-Physical Vapor Deposition, PS-PVD)制备了 Yb2SiO5/Mullite/Si 环境障涂层体系,探讨了涂层沉积机制及其在高温环 境下的显微结构演化过程,并提出了通过表面镀 Al 来 提高 EBC 耐蚀性的新方法。Hu 等^[22]设计了 Lu₂Si₂O₇-Lu₂SiO₅/Mullite 双涂层体系,该体系可有效提高服 役温度(1450 ℃),但热循环过程中因产生贯穿裂纹 而失效。本研究团队^[10,23]设计并制备了 Yb₂SiO₅/ Yb₂Si₂O₇/Si 涂层体系,发现该涂层体系各层之间化 学相容性好,具有良好的抗热震性能、抗裂纹扩展 性能和抗 CMAS(CaO-MgO-Al₂O₃- SiO₂)腐蚀性能。

涡轮发动机在服役过程中会面临 Na₂SO₄、NaCl 等盐污染物引起的热腐蚀^[24-26]。Na₂SO₄主要由矿物 燃料中硫的氧化产物(SO₂/SO₃)与大气中的 NaCl 气 溶胶反应而形成。如果涡轮发动机在海洋环境中运 行, NaCl 会与发动机燃料中的 SO₃ 及水蒸气发生反 应生成 Na₂SO₄^[27]。此外,吸入的 NaCl 与 Na₂SO₄ 的共晶混合物熔点较低(~620 ℃),也会导致材料在 低温下发生腐蚀^[28]。EBC 中硅黏结层的氧化产物 SiO₂ 与 Na₂SO₄发生反应生成 Na₂SiO₃和 SO₃,进一 步加剧了涂层性能的衰退^[29]。因此, Na₂SO₄、NaCl 等沉积物对 EBC 的腐蚀是值得引起重视的问题。

Sun 等^[30]研究了 γ -Y₂Si₂O₇的 Na₂SO₄腐蚀行为 和机制,发现其在950 ℃环境下腐蚀 20 h 生成条形 的磷灰石相 NaY₉Si₆O₂₆和富硅层,腐蚀产物在高温 下易熔融形成液相,可填充涂层内部孔隙,有利于 延缓腐蚀。Fan 等^[31]发现在950 ℃、Na₂SO₄+V₂O₅ 熔盐环境下, γ -Y₂Si₂O₇腐蚀 20 h 会生成 NaY₉Si₆O₂₆ 相。Opila 等^[27]对 Yb₂Si₂O₇/Si 涂层体系的 Na₂SO₄ 腐蚀行为研究发现,经 1316 ℃腐蚀不足 1 h, Yb₂Si₂O₇ 全部反应;涂层体系失效的原因是热生长 氧化物(Thermally Grown Oxide, TGO)的生成以及 无定型硅酸钠的渗透与迁移。目前未发现文献报道 Yb₂O₃-SiO₂-Na₂O 的相图,但Yb₂O₃-SiO₂-Na₂O 化合 物的合成研究已证明存在钠磷灰石相 NaYb₉Si₆O₂₆ 以及 Na₃YbSi₂O₇和 NaYbSiO₄相^[32-33]。

Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系具有良好的高温 性能,但其在 Na₂SO₄ 热腐蚀环境中的腐蚀行为和 机制尚无系统研究。本工作以 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系为研究对象,探究该体系在 900 ℃、 Na₂SO₄+25% NaCl 熔盐环境中的腐蚀行为,明确不 同腐蚀时间的涂层体系中各层的显微结构变化及失 效机制。这些结果将为稀土硅酸盐环境障涂层的设 计和性能优化提供科学依据。

1 实验方法

1.1 涂层制备

采用固相反应法合成 Yb₂SiO₅ 和 Yb₂Si₂O₇,喷 涂粉体的具体合成方法参考团队前期工作^[12,15]。以 尺寸为 ¢25.4 mm×3 mm 的 SiC 陶瓷作为基体,采用 真空等离子喷涂技术(VPS, A-2000; Oerlikon Metco, Switzerland)分别将 Si、Yb₂Si₂O₇ 和 Yb₂SiO₅ 粉体依 次喷涂在基体上,最终获得 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂 层体系。制备的样品用无水乙醇超声清洗 3 次,烘 干、备用。真空等离子喷涂参数见表 1。

1.2 腐蚀实验

研究采用马弗炉进行热腐蚀实验。模拟的熔盐 腐蚀环境为 900 ℃空气环境, 熔盐成分为 Na₂SO₄+ 25% NaCl。首先以去离子水为分散剂, 将熔盐粉体 均匀分散, 涂覆于涂层表面。随后在 120 ℃干燥箱 中干燥 15 min, 反复涂覆,使表面熔盐浓度达 6 mg/cm²。将样品放入马弗炉中,设置并启动升温 程序,以10 ℃/min升温至 900 ℃并保温 10 h, 然后 取出样品并在其表面重新涂覆 6 mg/cm² 的熔盐粉 体,此为一个循环。观察样品形貌, 实验循环进行至 涂层开始出现剥落为止。

表1 真空等离子喷涂参数

Table I	Operating parameter	s used for vacuum	n plasma	spraym	g

	Yb_2SiO_5	$Yb_2Si_2O_7$	Si
Primary Ar/($L \cdot min^{-1}$)	46	53	52
Secondary $H_2/(L \cdot min^{-1})$	14	10	13
Carrier Ar/($L \cdot min^{-1}$)	2.3	2.3	2.0
Spray distance/mm	220	220	290

1.3 样品表征

采用光学显微镜(OM, E3CMOS, 宁波舜宇仪 器有限公司, 中国)观察样品实验前后的宏观形貌。 采用 X 射线衍射仪(XRD, RAX-10, Rigaku, 日本)表 征不同腐蚀时间的涂层物相。根据衍射峰强度, 通过 RIR 值法计算腐蚀后涂层表面的物相含量(Jade 6.5)。 采用场发射扫描电子显微镜(SEM, Magellan 400, FEI, 美国)分析涂层的表面和截面等微观结构。分 析截面样品前, 需要进行金相抛光处理, 后经无水 乙醇超声清洗并烘干。采用电子顺磁共振仪(EPR, A300-10, Bruker, 德国)表征涂层中的氧空位浓度。

2 结果与讨论

2.1 喷涂态涂层显微结构分析

图 1(a)为 Yb₂SiO₅ 粉体和喷涂态涂层的 XRD 图 谱,与粉体相比,涂层中除 Yb₂SiO₅ 相外,还出现 了 Yb₂O₃ 相和非晶相。Yb₂SiO₅ 粉体在温度远高于 其熔点的等离子火焰中易发生分解,分解产物氧化 硅挥发,Yb₂O₃ 留在涂层中,使得涂层的物相组成不 同于粉体^[4]。非晶相是由喷涂过程中熔融粒子迅速 冷却造成的。涂层表面由熔融良好的粒子充分铺展 而成,具有等离子喷涂涂层的典型形貌,含有少量微 裂纹和气孔(图 1(b))。通过截面形貌(图 1(c))可以看出, 涂层体系包含明显的 Si、Yb₂Si₂O₇ 和 Yb₂SiO₅ 三层结 构,Yb₂Si₂O₇-Si 和 Yb₂SiO₅-Yb₂Si₂O₇界面均结合良好, 涂层内部存在少量气孔和微裂纹等缺陷(图 1(d, e))。

2.2 熔盐腐蚀行为研究

图 2 是 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经 900 ℃熔盐

图 1 喷涂态 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层的 XRD 图谱和显微结构 Fig. 1 XRD patterns and SEM morphologies of as-sprayed Yb₂SiO₅/Yb₂Si₂O₇/Si coating (a) XRD patterns; (b) Surface morphology; (c-e) Cross-sectional morphologies

图 2 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层熔盐腐蚀不同时间的宏观形貌 Fig. 2 Macro-photographs of Yb₂SiO₅/Yb₂Si₂O₇/Si coating after molten salt corrosion for different time (a) As-sprayed; (b) 60 h; (c)100 h; (d) 240 h

腐蚀不同循环次数的宏观形貌。可以发现, 经 6 个 和 10 个腐蚀循环后, 涂层保持完整; 直至 24 个腐蚀 循环后(240 h), 涂层开始出现剥落现象。

Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经不同时间腐蚀后的 XRD 图谱如图 3 所示。可以发现, 经腐蚀后, 涂层 表面物相仍由 Yb₂SiO₅相和 Yb₂O₃相组成。通过 RIR 值法计算涂层中的 Yb₂O₃ 第二相含量, 经 60、100 和 240 h 腐蚀, Yb₂O₃ 的质量分数分别为 36.15%、 30.65%和 25.59%。可见, 随着循环次数增加, Yb₂O₃ 含量逐渐减少。

图 4 是 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系经熔盐腐 蚀不同时间后的表面显微结构图。可以发现,腐蚀 60 和 100 h 后涂层表面主要包括白色衬度的粗糙

图 3 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经熔盐腐蚀不同时间的 XRD 图谱

Fig. 3 XRD patterns of $Yb_2SiO_5/Yb_2Si_2O_7/Si$ coating after molten salt corrosion for different time

图 4 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经熔盐腐蚀不同时间的低倍和高倍形貌及其不同位置元素分析 Fig. 4 Surface morphologies of Yb₂SiO₅/Yb₂Si₂O₇/Si coating after molten salt corrosion for different time and correponding EDS analyses of different areas (a-c) Low magnification; (d-f) High magnification

1271

颗粒和黑色衬度的光滑区域;腐蚀 240 h 后涂层表 面黑色衬度的光滑区域消失殆尽。高倍形貌显示, 黑色衬度的光滑区域存在较多裂纹。EDS 结果表明, 涂层表面黑色衬度区域由 S、Na、O 三种元素组成, 推测该物相为残余熔盐(腐蚀物),白色衬度区域为 Yb₂O₃或 Yb₂O₃+Yb₂SiO₅的混合物。随腐蚀时间延 长,表面残余熔盐减少,这是腐蚀过程中熔盐逐渐 渗透至涂层内部导致的。EDS 结果显示,随腐蚀时 间延长,白色衬度区域的硅含量呈增加趋势,说明 Yb₂SiO₅相逐渐增多,而 Yb₂O₃相逐渐减少。

Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经 900 ℃熔盐腐蚀不同时间后 Yb₂SiO₅ 层的截面形貌如图 5 所示。可以看出,腐蚀实验后涂层内部仍较为致密,随着腐蚀循环次数增加,涂层出现纵向裂纹,涂层变得疏松

多孔。纵向裂纹和疏松多孔结构为腐蚀介质提供通 道,进一步加剧渗透。从 EDS 结果可以看出,经过 6 次循环后,Na 元素主要分布于涂层上部;随着腐 蚀时间延长,在孔隙处存在Na元素富集现象,进一 步说明熔盐发生渗透。

图 6 是 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系经 900 ℃ 熔盐腐蚀 60、100 和 240 h 的截面形貌及 EDS 元素 面分析。可以看出, 经不同时间腐蚀后, 涂层体系各 层之间、涂层与基体之间均结合良好, 少量贯穿 Yb₂SiO₅涂层的裂纹终止于 Yb₂Si₂O₇中间层。由 EDS 分析结果可知, Yb₂Si₂O₇中间层存在熔盐渗透和 Na 元素富集现象。随腐蚀时间延长, 渗透区面积逐渐 增大。腐蚀 60 h 后, Si 黏结层上方未发现明显二氧 化硅 TGO 层; 腐蚀 100 h 后, Si 黏结层上方形成

图 5 Yb₂SiO₅ 面层经熔盐腐蚀不同时间的截面形貌及其元素面分析 Fig. 5 Cross-sectional morphologies and corresponding element analyses of Yb₂SiO₅ top layer after molten salt corrosion for different time

图 6 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经熔盐腐蚀不同时间的截面形貌及其 EDS 元素面分析 Fig. 6 Cross-sectional morphologies and corresponding EDS element mappings of Yb₂SiO₅/Yb₂Si₂O₇/Si EBCs after molten salt corrosion for different time Colorful figures are available on website

不连续 TGO 层; 当腐蚀时间延长至 240 h, Si 黏结层 上方形成连续 TGO 层。在硅黏结层内部未发现 Na 元素分布, 说明熔盐并未渗透到黏结层。

图 7 是经熔盐腐蚀 60、100 和 240 h 的涂层体 系 Yb₂Si₂O₇ 中间层渗透区高倍形貌及 EDS 元素面 分析。结合 EDS 分析结果可以发现,渗透区域主要 包含三种不同衬度区。灰白色衬度区包括两种形态: 条状颗粒(点 1、5、9,原子比 Na : Yb : Si≈1 : 9 : 6) 推测为稀土钠磷灰石,其化学式为 NaYb₉Si₆O₂₆;无 规则灰白色衬度区(点 2、6、10,原子比 Yb : Si≈ 2 : 1)为 Yb₂SiO₅。灰色衬度区(点 3、7、11,原子比 Yb : Si≈1 : 1)为 Yb₂Si₂O₇。黑色衬度的区(点 4、8、12) 则是由 Na、Si、Yb、O 元素组成, Na 元素存在富集 现象,可能是 Na-Yb-Si-O 化合物。通过对比图 7(a~c) 条状颗粒发现,随着腐蚀时间延长,稀土钠磷灰石 产物体积逐渐增大。

	mar	kad ragions in	Fia	7/% (in at	m)
	Table 2	EDS elemen	tal co	omposition	s of the
表 2	图 7 中	标记区域的〕	EDS 5	元素组成/%	⑥(原子分数)

Position	Yb	Si	Na	0	
1	21.69	14.27	1.98	62.06	
2	24.91	12.57	_	62.52	
3	18.29	18.09	_	63.62	
4	10.15	18.67	2.41	58.77	
5	22.50	13.75	1.67	62.08	
6	24.92	12.57	-	62.51	
7	18.03	18.31	_	63.66	
8	8.95	19.25	13.25	58.55	
9	22.93	13.20	2.04	61.82	
10	24.45	12.96	_	62.59	
11	17.82	18.04	_	63.25	
12	8.91	19.21	13.39	58.49	

2.3 熔盐腐蚀机制分析

图 8 是在 900 ℃环境 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层 经 Na₂SO₄+25% NaCl 熔盐腐蚀的示意图。结合涂层 熔盐腐蚀行为研究结果, 推测熔盐与涂层发生如下 反应^[30, 34-35]:

 $\begin{array}{ll} Yb_2O_3(s) + 3Na_2SO_4(l) = Yb_2(SO_4)_3(s) + 3Na_2O(s) & (1) \\ 11Yb_2Si_2O_7(s) + 2Na_2SO_4(l) = 2NaYb_9Si_6O_{26}(s) + SiO_2(s) + \\ Na_2O\cdot 2Yb_2O_3\cdot 9SiO_2(l) + 2SO_2(g) + O_2(g) & (2) \\ 2NaCl(l) + 1/2O_2(g) = Na_2O(s) + Cl_2(g) & (3) \\ \end{array}$

随着腐蚀时间延长,Yb₂SiO₅涂层中Yb₂O₃含量 逐渐减少,这主要由于Yb₂O₃与Na₂SO₄反应生成了 Yb₂(SO₄)₃(反应式(1))。而Yb₂(SO₄)₃易从涂层表面 脱落,因此XRD中没有检测出该物相^[35]。当熔盐渗 透至中间层时,与Yb₂Si₂O₇反应生成条状稀土钠磷 灰石NaYb₉Si₆O₂₆(反应式(2)),同时在Na元素富集 的黑色衬度区可能形成由Yb₂O₃-SiO₂-Na₂O组成的 化合物。随着腐蚀循环次数增加,在热应力的作用 下,表层涂层出现贯穿裂纹,熔盐进一步渗透,且 渗透区增大,渗透深度增加,促使生成更多的 NaYb₉Si₆O₂₆。NaCl中的Cl⁻会与O₂发生反应生成 Cl₂,同时Na₂SO₄与硅酸盐发生反应生成SO₂等挥 发性气体,随着腐蚀时间延长,生成的气体更多, 从而导致涂层变得疏松多孔,这为腐蚀介质提供通 道,加速了涂层失效。

通过 EPR 测试 Yb₂SiO₅和 Yb₂Si₂O₇涂层的氧 空位浓度,如图9所示,发现 Yb₂Si₂O₇涂层的氧空 位浓度高于 Yb₂SiO₅涂层。氧空位浓度越高,涂层 的点缺陷数量越大,这会造成涂层材料的耐蚀性 能较差。

图 7 经 Na₂SO₄+25% NaCl 熔盐腐蚀不同时间的涂层体系 Yb₂Si₂O₇中间层渗透区高倍截面形貌及 EDS 元素面分析 Fig. 7 High-magnification cross-sectional morphologies and corresponding EDS mappings of infiltration zone in Yb₂Si₂O₇ interlayer after molten salt corrosion for different time Colorful figures are available on website

图 8 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层经 900 ℃、Na₂SO₄+25% NaCl 熔盐腐蚀示意图 Fig. 8 Schematic diagrams of Yb₂SiO₅/Yb₂Si₂O₇/Si coating under Na₂SO₄+25% NaCl molten salt corrosion at 900 ℃

图 9 Yb₂SiO₅和 Yb₂Si₂O₇涂层的 EPR 图谱 Fig. 9 EPR spectra of Yb₂SiO₅ and Yb₂Si₂O₇ coating

3 结论

研究采用真空等离子喷涂技术制备了 Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层体系,研究了涂层在 900 ℃空气环境中的熔盐(Na₂SO₄+25% NaCl)腐蚀行为 与机制,得出以下结论:

1)Yb₂SiO₅/Yb₂Si₂O₇/Si 涂层结构较为致密, 各 层之间结合良好。腐蚀过程中, Na₂SO₄+25% NaCl 熔盐渗透多层体系中的 Yb₂SiO₅ 涂层, 在 Yb₂Si₂O₇ 中间层发生富集, 但并未渗透至硅黏结层。结果显 示该涂层体系具有良好耐熔盐腐蚀性能。

2)Yb₂SiO₅ 涂层中 Yb₂O₃ 第二相会与熔盐发生 反应生成 Yb₂(SO₄)₃ 和 Na₂O。随着腐蚀时间延长, Yb₂O₃ 含量减少。Yb₂Si₂O₇ 与 Na₂SO₄ 反应生成 NaYb₉Si₆O₂₆磷灰石相,并产生 Cl₂、SO₂等气体,导 致涂层孔隙增加,从而影响其服役寿命。

参考文献:

- PADTURE N P. Advanced structural ceramics in aerospace propulsion. *Nature Materials*, 2016, 15(8): 804–809.
- [2] LEE K N, FOX D S, ELDRIDGE J I, et al. Advanced environmental barrier coatings developed for SiC/SiC composite vanes (2022-06-01). https://ntrs.nasa.gov/search.jsp?R=20050214693.
- [3] EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002,

22(14/15): 2741–2747.

- [4] RICHARDS B T, WADLEY H N G. Plasma spray deposition of tri-layer environmental barrier coatings. *Journal of the European Ceramic Society*, 2014, 34(12): 3069–3083.
- [5] TIAN Z L, ZHENG L Y, WANG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE₂SiO₅ (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. *Journal of the European Ceramic Society*, 2016, **36(1):** 189–202.
- [6] LIU J, ZHANG L T, LIU Q M, et al. Calcium-magnesiumaluminosilicate corrosion behaviors of rare-earth disilicates at 1400 °C. Journal of the European Ceramic Society, 2013, 33(15/16): 3419–3428.
- [7] JIANG F R, CHENG L F, WANG Y G. Hot corrosion of RE₂SiO₅ with different cation substitution under calcium-magnesiumaluminosilicate attack. *Ceramics International*, 2017, 43(12): 9019–9023.
- [8] DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites. *Journal of the European Ceramic Society*, 2019, **39(7):** 2574–2579.
- [9] SUN L C, REN X M, DU T F, et al. High entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2021, 36(4): 339–346.
- [10] ZHONG X, NIU Y R, LI H, et al. Thermal shock resistance of tri-layer Yb₂SiO₅/Yb₂Si₂O₇/Si coating for SiC and SiC-matrix composites. Journal of the American Ceramic Society, 2018, 101(10): 4743–4752.
- [11] ZHU T, NIU Y R, ZHONG X, et al. Influence of phase composition on microstructure and thermal properties of ytterbium silicate coatings deposited by atmospheric plasma spray. Journal of the European Ceramic Society, 2018, 38(11): 3974–3985.
- [12] ZHONG X, NIU Y R, LI HONG, et al. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb₂SiO₅ coating during thermal aging. *Journal of the American Ceramic Society*, 2017, **100(5)**: 1896–1906.
- [13] ZHONG X, WANG Y W, NIU Y R, *et al.* Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium-magnesium-alumino-silicate melts. *Corrosion Science*, 2021, **191**: 109718.
- [14] WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed RE₂SiO₅ (RE=Gd, Y, Er) coatings. *Corrosion Science*, 2020, **167**: 108529.
- [15] ZHONG X, ZHU T, NIU Y R, et al. Effect of microstructure evolution and crystal structure on thermal properties for plasmasprayed RE₂SiO₅ (RE=Gd, Y, Er) environmental barrier coatings. *Journal of Materials Science & Technology*, 2021, 85: 141–151.
- [16] LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCt/SiC composites completely coated with plasma sprayed tri-layer EBCs. *Ceramics International*, 2022, 48(5): 7082–7092.

- [17] LEE K N, FOX D S, BANSAL N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si₃N₄ ceramics. *Journal of the European Ceramic Society*, 2005, 25(10): 1705–1715.
- [18] ZHANG X F, ZHOU K S, LIU M, et al. Preparation of Si/mullite/ Yb₂SiO₅ environment barrier coating (EBC) by plasma sprayphysical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018, 33(3): 325–330.
- [19] WANG C, ZHANG X F, ZHOU K S, et al. Nano-composite structured environmental barrier coat-ings prepared by plasma sprayphysical vapor deposition and their thermal cycle performance. *Rare Metal Materials and Engineering*, 2019, **48**(11): 3455–3462
- [20] ZHANG X F, SONG J B, DENG Z Q, et al. Interface evolution of Si/Mullite/Yb₂SiO₅ PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020, 40(4): 1478–1487.
- [21] ZHANG X F, ZHOU K S, LIU M, et al. Oxidation and thermal shock resistant properties of Al-modified environmental barrier coating on SiC_f/SiC composites. *Ceramics International*, 2017, 43(16): 13075–13082.
- [22] HU X X, XU F F, LI K W, et al. Water vapor corrosion behavior and failure mechanism of plasma sprayed mullite/Lu₂Si₂O₇-Lu₂SiO₅ coatings. *Ceramics International*, 2018, 44(12): 14177–14185.
- [23] LIU P P, ZHONG X, NIU Y R, et al. Reaction behaviors and mechanisms of tri-layer Yb₂SiO₅/Yb₂Si₂O₇/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. *Corrosion Science*, 2022: 110069.
- [24] WU S J, CHENG L F, ZHANG L T, et al. Corrosion of SiC/SiC composite in Na₂SO₄ vapor environments from 1000 °C to 1500 °C. Composites Part A: Applied Science and Manufacturing, 2006, 37(9): 1396–1401.
- [25] KOSIENIAK E, BIESIADA K, KACZOROWSKI J, et al. Corrosion failures in gas turbine hot components. *Journal of Failure Analysis and Prevention*, 2012, **12(3)**: 330–337.

- [26] JACOBSON N S. Kinetics and mechanism of corrosion of SiC by molten salts. *Journal of the American Ceramic Society*, 1986, 69(1): 74–82.
- [27] HERWEYER L A, OPILA E J. High-temperature Na₂SO₄ interaction with air plasma sprayed Yb₂Si₂O₇+Si EBC system: Topcoat behavior. *Journal of the American Ceramic Society*, 2021, **104(12)**: 6496–6507.
- [28] LI L, LU J, LIU X Z, et al. Al_xCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na₂SO₄+25% NaCl at 900 °C. *Corrosion Science*, 2021, **187**: 109479.
- [29] HAGAN J M, OPILA E J. High-temperature Na₂SO₄ depositassisted corrosion of silicon carbide–I: temperature and time dependence. *Journal of the American Ceramic Society*, 2015, 98(4): 1275–1284.
- [30] SUN Z Q, LI M S, ZHOU Y C. Kinetics and mechanism of hot corrosion of γ-Y₂Si₂O₇ in thin-film Na₂SO₄ molten salt. *Journal of the American Ceramic Society*, 2008, 91(7): 2236–2242.
- [31] FAN X Y, SUN R J, DONG J, et al. Effects of sintering additives on hot corrosion behavior of γ-Y₂Si₂O₇ ceramics in Na₂SO₄+V₂O₅ molten salt. Journal of the European Ceramic Society, 2021, 41(1): 517–525.
- [32] LATSHAW A M, YEON J, SMITH M D, et al. Synthesis, structure, and polymorphism of A₃LnSi₂O₇ (A=Na, K; Ln=Sm, Ho, Yb). *Journal of Solid State Chemistry*, 2016, 235: 100–106.
- [33] LATSHAW A M, WILKINS B O, CHANCE W M, et al. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na₂RESiO₄ (OH) (RE=Sc, Yb) and NaRESiO₄ (RE=La, Yb). Solid State Sciences, 2016, **51**: 59–65.
- [34] JONNALAGADDA K P, MAHADE S, KRAMER S, et al. Failure of multilayer suspension plasma sprayed thermal barrier coatings in the presence of Na₂SO₄ and NaCl at 900 °C. Journal of Thermal Spray Technology, 2019, 28(1): 212–222.
- [35] 蒋凤瑞. B_{1-s}S_xAS 及稀土硅酸盐环境障碍涂层热腐蚀性能研究. 西安:西北工业大学博士学位论文, 2017.